Analysis of Software Defect Classes by Data Mining Classifier Algorithms

Dhyanchandra Yadav, Rajeev Kumar

____ **♦**

Abstract— Software bugs create problems in software project development. We can categories software bugs by some specific data mining classifiers algorithms. Predicts categorical class level classifiers based on training set and the values in the class level attribute use the model in classifying new data. We compare between AD Tree, RFP Tree and LAD Tree, Random Tree,ID3,J48,J48 graft, OneR, ZeroR, Prism ,Bayes Net and Naïve Bayes for correctly classify and uncorrectly classify with time build model.

Key Words— AD Tree, RFP Tree and LAD Tree, Random Tree, ID3, J48, J48 graft, OneR, ZeroR, Prism, Bayes Net, Naïve Bayes and Weka Tool.

1 INTRODUCTION

CLassification is the process of organizing data into categories for its most effective and efficient use. Classification is the process of predicting the class of a new item. Therefore to classify the new item and identify to which class it belongs given a collection of records (*training set*). Each record contains a set of *attributes*, one of the attributes is the *class*. In our hole analysis we use classifiers algorithms as[1]:

1.1 Classifiers Bayes

Bayes Net and Naïve Bayes classifiers provide help in software bug and non_bug classification. In classification the Bayes classifier minimises the probability of misclassification, or risk, of a classifier [2].

1.2 Classifiers Rules

OneR, ZeroR, Prism provide help in data classification as zer leve ,one level and calculate probability of incidences. Classification rule is a procedure in which Bayes have event and supporting evidence by which arises many cases[3][4][5].

1.3 Classifiers Tree

Decision tree classification algorithm is widely used in statistics, data mining, machine learning. The goal is to create a decision tree model, which uses the given input data to predict the target data classification. For the nodes within the tree, we compare the attribute values. Each branch is a possible classification for the target data. Leaf node is the classification of the target data. Decision tree is a classifier of root node which generate another branches as a node[2].

2 RELATED WORK-

Shepperd, Schofield and Kitchenham[6] discussed that need of cost estimation for management and software development organizations and give the idea of prediction also give the methods for estimation.

Alsmadi and Magel[7] discussed that how data mining provide facility in new software project its quality, cost and complexity also build a channel between data mining and software engineering.

Boehm,Clark,Horowitz,Madachy,Shelby and Westland[8] discussed that some software companies suffer from some accuracy problems depend on his data set after prediction software company provide new idea to specify project cost schedule and determine staff time table.

K.Ribu[9] discussed that the need of open source code projects analyzed by prediction and get estimating object oriented software project by case model.

Nagwani and Verma[10] discussed that the prediction of software defect(bug) and duration similar bug and bug average in all software summery, by data mining also discuss about software bug.

Hassan [11] discussed that the complex data source (audio, video, text etc.) need more have buffer for processing it does not support general size and length of buffer.

Li and Reformate[12] discussed that .the software configuration management a system includes documents, software code, status accounting, design model defect tracking and also include revision data.

Elcan[13] discussed that COCOMO model pruned accurate cost estimation and there are many thing about cost estimation because in project development involve more variable so CO-COMO measure in term effort and metrics.

Chang and Chu [14] discussed that for discovering pattern of large database and its variables also relation between them by association rule of data mining.

Kotsiantis and Kanellopoulos[15] discussed that high severity defect in software project development and also discussed the pattern provide facility in prediction and associative rule reducing number of pass in database.

Pannurat, N.Kerdprasop and K.Kerdprasop[16] discussed that

[•] Dhyan Chandra Yadav is research scholar in Ph.D program in Computer SVU,Gajraula,Amroha (U.P.)E-mail:dc9532105114@gmail.com .

Rajeev Kumar is currently working as Assistant Professor, SVU,Gajraula,Amroha (U.P.) India. Dept, of Computer Science., PH-09997672215. E-mail: rajeev2009mca@gmail.com

association rule provide facility the relationship among large dataset as like software project term hug amount , cost record and helpful in process of project development.

Fayyad,PiateskyShapiro,Smuth and Uthurusamy [17] discussed that classification creates a relationship or map between data item and predefined classes.

Shtern and Vassillios[18] discussed that in clustering analysis the similar object placed in the same cluster also sorting attribute into group so that the variation between clusters is maximized relative to variation within clusters.

Runeson and Nyholm[19] discussed that code duplication is a problem which is language independent. It is appear again and again another problem report in software development and duplication arises using neural language with data mining.

Vishal and Gurpreet[20] discussed that data mining analyzing information and research of hidden information from the text in software project development.

Lovedeep and Arti[21]data mining provide a specific platform for software engineering in which many task run easily with best quality and reduce the cost and high profile problems.

Nayak and Qiu[22] discussed that generally time and cost, related problems arises in software project development these problems mentation in problem report ,data mining provide help in to reduce problems also classify and reduce another software related bugs .

The proposed system will analyze type of software defect. Predicts categorical class level classifiers based on training set and the values in the class level attribute use the model in classifying new data. We compare between AD Tree, RFP Tree and LAD Tree, Random Tree,ID3,J48,J48 graft, OneR, ZeroR, Prism ,Bayes Net and Naïve Bayes for correctly classify and uncorrectly classify with time build model.

3 METHODOLOGY-

Our research approach is to use some classifiers algorithms (trees, rules and Bayes). The research methodology is divided into 5 steps to achieve the desired results:

Step 1: In this step, prepare the data and specify the source of data.

Step 2: In this step select the specific data and transform it into different format by weka.

Step 3: In this step, implement data mining algorithms and checking of all the relevant bugs and errors is perform.

Step 4: We classify the relevant bugs using classifier algorithms at particular time.

Step 5: At the end, the results are display and evaluated completed,.

3.1 DATA PREPARATION-

to collect and maintain all problem reports from every department of "MASC".

 TABLE 1

 THE VARIABLES USED IN THE COMPUTATIONAL TECHNIQUE

DEPENDABLE VARIABLE	DETAILS
$\{N O N - B U G = 0\}$	No loss in project development
	process.
$\{SOFT-BUG=1\}$	Software defect in project
	development process.
$\{D O C - B U G = 2\}$	Software defect in project
	development process.
$\{MISTAKEN - BUG = 3\}$	Software defect in project
	development process.
$\{DUPLICATE-BUG=4\}$	Software defect in project
	development process.
EXPLNATORY	VALUE
VARIABLE	
SEVERITY	{1=Normal,0=Serious}
NOT REDUNDANT	1= No Redundancy. 0=
	Complete Redundant.
STATE	{0=Closed,1=Open,2=Active,3=A
	nalysed,4=Suspended,5=Resolve
	d,6=Feedback}
TIME TO FIX	{0=Within Two Days,1=Within
	One Week,2=Within Two
	Week,3=Within Three
	Week,4=Within Four
	Week,5=Within Five Week}
PRIORITY	{0=Not,1=High,2=Medium,3=Lo
	w }
RISK TYPE	{0=Not,1=High,2=Midium,3=Lo
	w,4=Cosmetic}

The soft-bug, doc-bug, mistaken-bug and duplicate-bug are parts of class field in software development. Now performing for classification of software defect using several standard algorithms of data mining classifier algorithms. The database is designed in "MS-Excel, MS word 2010 database" and database management system to store the collect data.

3.2 DATA SELECTION AND TRANSFORMATION-

In this step only those fields were selected which were required for data mining. A few derived variables were selected. We select some classifier algorithms and transform all classifiers in specific way as:

3.3 DATA MINING IMPLEMENTATION-

Weka is open source software that implements a large collection of machine learning algorithms and is widely used in data mining applications. From the above data bug.csv file was created. This file was loaded into weka explorer and analyzes risk of software defects predicts. Predicts categorical class level classifiers based on training set and the values in the class level attribute use the model in classifying new data.

A software defect tracking system, "GANTS" which is a bug tracking system in software bug .It is set on "MASC" intranet

1001 2227-00	10						
Time taken to	build mod	el: 0.02 se	conds				
=== Stratifie	d cross-va	lidation ==	-				
=== Summary =		ridación -	-				
Correctly Cla	ssified In	stances	49		81.6667	•	
Incorrectly C			7		11.6667		
Kappa statist			0.27				
Mean absolute			0.07				
Root mean squ Relative abso			0.22				
Root relative			99.60				
UnClassified			4		6.6667	Ł	
Total Number	of Instanc	23	60				
=== Detailed	Accuracy B	y Class ===	•				
	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	1	0.75	0.889		0.941	0.694	
	1	0.018	0.5	1	0.667	0.741	
	0	0	0	0	0	0.441	three two
	0	0	0	0	0	0.5	one
Weighted Avg.	-		0.771				
Fig. 1. Inst	ances cl	assified	by Id3 alo	gorithm	s.		
Time taken to k	uild model	: 0 second:	3				
=== Stratified === Summary ===		dation ===					
Correctly Class		ances	50		83.3333 %		
Incorrectly Cla			10		16.6667 %		
Kappa statistic			0.1513	1			
Mean absolute e			0.1028				
Root mean squar			0.2445				
Relative absolu			71.3304				
Root relative s Total Number of	-		95.8973 60	8			
=== Detailed Ac							
	TP Rate	FP Rate	Precision	Recall F	-Measure	ROC Area	Class
			0.831		0.907		zero
	0.5	0	1	0.5	0.667	0.953	four
	0	0		0	0		three
	0	0		0	0		two
Weighted Avg.	0	0 742	0 0.712	0	0.763	0.441	one
nerghted Avg.	0.000	01742	0.712	01000	01700	0.001	
Fig. 2. Instar	nces clas	ssified by	yJ48 algo	rithms.			
Time taken to	build mod	el: 0 secon	nds				
=== Stratifie === Summary =		iidation ==	-				
Correctly Cla	ssified T-	stances	50		83.3333	\$	
Incorrectly Cla					16.6667		
Kappa statist			0.15	13	20.0007	-	
Mean absolute			0.10				
Root mean squ			0.24				
Relative abso			71.33				
Root relative Total Number	-		95.89 60	73 %			
=== Detailed	Accuracy B	y Class ===	-				
	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	1	0.909	0.831	1	0.907	0.609	zero
	0.5	0	1	0.5	0.667	0.953	
	0	0	0	0	0	0.33	three
	0	0	0	0	0	0.432	
Weighted Av-	0 0.833	0 0.742	0	0 0.833	0 0.763	0.441 0.582	one
Weighted Avg.	0.033	0.742	0.712		0.763	0.362	
Fig 2 Inst							
Fig. 5. Inst	ances cl	assified	byJ48 gra	aft algo	orithms		

Correctly Cla	saified In	stances	50		83.3333		
Incorrectly C					16,6667	-	
Kappa statist		Instantes	0.35	76	10.0007	•	
Mean absolute			0.09				
Root mean sou			0.24				
Relative abso			65.12				
Root relative			95.19				
Total Number			60				
	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.98		0.889				
	1	0	1	1	1	1	
			0	0		0.445	
	0		-				
	0	0		0	0	0.915	
Weighted Avg.	0		0	0	0	0.042	one

=== Stratified	i cross-vai	lidation ==					
=== Summary ==	-						
Correctly Clas	sified In	stances	50		83.3333	1	
Incorrectly Cl			10		16.6667	ł	
Kappa statisti	c		0.20	12			
Mean absolute	error		0.09	56			
Root mean squa	ared error		0.24	98			
Relative absol	lute error		66.30	74 %			
Root relative	squared e	rror	97.96	73 %			
Total Number of	of Instance	25	60				
=== Detailed }	Accuracy B	/ Class ===	-				
	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Clas
	1	0.818	0.845	1	0.916	0.646	zer
	0.5	0.017	0.5	0.5	0.5	0.961	fou
	0	0	0	0	0	0.381	thr
	0	0	0	0	0	0.475	two
	0	0	0	0	0	0.483	one
Weighted Avg.	0.833	0.669	0.707	0.833	0.765	0.62	

Fig. 5. Instances classified by Random Tree algorithms.

=== Stratified	i cross-val	lidation ==					
=== Summary ==							
Correctly Clas	sified In:	stances	49		81.6667 4	•	
Incorrectly Cl	lassified 3	Instances	11		18.3333 4	1	
Kappa statisti	c		0				
Mean absolute	error		0.12	79			
Root mean squa	ared error		0.25	38			
Relative absol	lute error		88.70	89 %			
Deep meletime	amurand au	TOT	99.52	31 &			
Root relative	squared e						
Root relative Total Number of			60				
	of Instance	23	60				
Total Number of	of Instance Accuracy By	es y Class ===	60		F-Measure	ROC Area	Class
Total Number of	of Instance Accuracy By	es y Class ===	60	Recall	F-Measure 0.899		
Total Number of	of Instance Accuracy By TP Rate	Y Class === FP Rate	60 Precision	Recall	0.899		zero
Total Number of	of Instance Accuracy By TP Rate 1	PP Rate	60 = Precision 0.817	Recall 1	0.899	0.45	zero four
Total Number of	of Instance Accuracy By TP Rate 1 0	FP Rate	60 = Precision 0.817 0	Recall 1 0	0.899	0.45	zero four three
Total Number of	of Instance Accuracy By TP Rate 1 0 0	FP Rate 0 0	60 = Precision 0.817 0 0	Recall 1 0 0	0.899 0 0	0.45 0.086 0.33	zero four three

IJSER © 2016 http://www.ijser.org

Time taken to h	build mode	el: O secon	nda				
=== Stratified	cross-val	lidation ==					
=== Summary ===							
Correctly Class	sified In:	stances	49		81.6667	ł	
Incorrectly Cla	assified 1	Instances	11		18.3333	1	
Kappa statistic	0		0				
Mean absolute e	error		0.14	42			
Root mean squar			0.25				
Relative absolu			100	8			
Root relative s Total Number of			100 60	8			
Detailed Ad	ccuracy B	y Class ===					
	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	1	1	0.817		0.899	0.45	zero
	0	0	0	0	0	0.086	
	0	0	0	0	0	0.33	three
	0	0	0	0	0	0.042	
	0	0	0	0	0	0.042	one
Weighted Avg.	0.817	0.817	0.667	0.817	0.734	0.41	
Time taken to b	build mod	el: O seco	nds				
=== Stratified	cross-va						
=== Stratified === Summary ===	cross-va =	lidation =			82 2223		
Stratified Summary Correctly Class	cross-va = sified In	lidation = stances			83.3333		
=== Stratified === Summary === Correctly Class Incorrectly Class	cross-va = sified In assified	lidation = stances	50 10		83.3333 16.6667		
=== Stratified === Summary === Correctly Class Incorrectly Class Kappa statistic	cross-va = sified In assified c	lidation = stances	50 10 0.20	42			
<pre>=== Stratified === Summary === Correctly Class Incorrectly Class Incorrectly Class Kappa statistic Mean absolute Root mean squai</pre>	cross-va = sified In assified c error red error	lidation = stances Instances	50 10	42			
<pre>=== Stratified === Summary === Correctly Class Incorrectly Class Incorrectly Class Kappa statistic Mean absolute Root mean squai</pre>	cross-va = sified In assified c error red error	lidation = stances Instances	50 10 0.20 0.06	42 67 82			
=== Stratified === Summary === Correctly Class Incorrectly Class Incorrectly Class Kappa statistic Mean absolute (Root mean squar Relative absol Root relative s	cross-va = sified In assified c error red error ute error squared e	lidation = stances Instances rror	50 10 0.20 0.25 46.23 101.26	42 67 82 82 %			
Stratified Summary Correctly Class Incorrectly Cl Kappa statistic Mean absolute (Root mean squa: Relative absolute)	cross-va = sified In assified c error red error ute error squared e	lidation = stances Instances rror	50 10 0.20 0.06 0.25 46.23	42 67 82 82 %			
=== Stratified === Summary === Correctly Class Incorrectly Class Incorrectly Class Kappa statistic Mean absolute (Root mean squar Relative absol Root relative s	cross-va = sified In assified c error red error ute error squared e f Instanc	lidation = stances Instances rror es	50 10 0.20 0.25 46.23 101.26 60	42 67 82 82 %			
Stratified Summary Correctly Class Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative s Total Number of	cross-va = sified In assified c error red error squared e f Instanc ccuracy B	lidation = stances Instances rror es y Class ==	50 10 0.20 0.25 46.23 101.26 60	42 667 882 882 %	16.6667		Class
Stratified Summary Correctly Class Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative s Total Number of	cross-va = sified In assified c error red error squared e f Instanc ccuracy B	lidation = stances Instances rror es y Class == FP Rate	50 10 0.20 0.25 46.23 101.26 60	42 67 82 82 % 76 % Recall	16.6667 F-Measure		
Stratified Summary Correctly Class Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative s Total Number of	cross-va = sified In assified c error red error ute error squared e f Instanc ccuracy B TP Rate	lidation = stances Instances rror es y Class == FP Rate	50 10 0.20 0.00 0.25 46.23 101.26 60 Precision 0.845	42 67 82 82 % 76 % Recall	16.6667 F-Measure 0.916	8 ROC Area	zero
Stratified Summary Correctly Class Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative s Total Number of	cross-va = sified In assified c error red error squared e f Instanc ccuracy B IP Rate 1 0.5 0	lidation = stances Instances y Class == FP Rate 0.818 0.017 0	50 10 0.20 0.25 46.23 101.26 60 Precision 0.845 0.5 0	142 167 182 % 182 % 176 % Recall 1 0.5 0	16.6667 F-Measure 0.916 0.5 0	ROC Area 0.591 0.741 0.5	zero four
Stratified Summary Correctly Class Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative s Total Number of	cross-va = sified In assified c error red error ute error squared e f Instanc ccuracy B TP Rate 1 0.5	lidation = stances Instances y Class == FP Rate 0.818 0.017	50 10 0.20 0.25 46.23 101.26 60 Precision 0.845 0.5 0 0	42 667 82 82 % 776 % Recall 1 0.5	16.6667 F-Measure 0.916 0.5 0 0	ROC Area 0.591 0.741 0.5 0.5	zero four
<pre>=== Stratified === Summary === Correctly Class Incorrectly Cl Kappa statisti Mean absolute e Root mean squa Relative absolu Root relative s Total Number of === Detailed Adv </pre>	cross-va = sified In assified c error red error ute error gquared e f Instanc ccuracy B TP Rate 1 0.5 0 0 0	lidation = stances Instances y Class == FP Rate 0.017 0 0	50 10 0.20 0.25 46.23 101.26 60 Precision 0.845 0.5 0 0	142 167 182 182 % 176 % Recall 1 0.5 0 0	16.6667 F-Measure 0.916 0.5 0 0	ROC Area 0.591 0.741 0.5 0.5	zero four three
Stratified Summary Correctly Class Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative s Total Number of	cross-va = sified In assified c error red error ute error gquared e f Instanc ccuracy B TP Rate 1 0.5 0 0 0	lidation = stances Instances y Class == FP Rate 0.017 0 0	50 10 0.20 0.25 46.23 101.26 60 Precision 0.845 0.5 0 0	142 167 182 182 % 176 % Recall 1 0.5 0 0	16.6667 F-Measure 0.916 0.5 0 0	ROC Area 0.591 0.741 0.5 0.5	zero four three two
<pre>=== Stratified === Summary === Correctly Class Incorrectly Cl Kappa statisti Mean absolute e Root mean squa Relative absolu Root relative s Total Number of === Detailed Adv </pre>	cross-va = sified In assified c error red error ute error gquared e f Instanc ccuracy B TP Rate 1 0.5 0 0 0 0.833	lidation = stances Instances y Class == FP Rate 0.818 0.017 0 0 0 0.0669	50 10 0.20 0.25 46.23 101.26 60 Precision 0.845 0.5 0 0 0 0.707	42 67 82 82 % 776 % Recall 1 0.5 0 0 0 0.833	16.6667 F-Measure 0.916 0.5 0 0 0.765	ROC Area 0.591 0.741 0.5 0.5	zero four three two
<pre>=== Stratified === Summary === Correctly Class Incorrectly Cl Kappa statisti Mean absolute of Root mean squa Relative absol Root relative i Total Number of === Detailed Av Weighted Avg.</pre>	cross-va = sified In assified c error red error ute error gquared e f Instanc ccuracy B TP Rate 1 0.5 0 0 0 0.833	lidation = stances Instances y Class == FP Rate 0.818 0.017 0 0 0 0.0669	50 10 0.20 0.25 46.23 101.26 60 Precision 0.845 0.5 0 0 0 0.707	42 67 82 82 % 776 % Recall 1 0.5 0 0 0 0.833	16.6667 F-Measure 0.916 0.5 0 0 0.765	ROC Area 0.591 0.741 0.5 0.5	zero four three two

	i cross-val						
=== Summary ==							
Correctly Clas	sified In	stances	49		81.6667	\$	
Incorrectly C	lassified	Instances	8		13.3333	8	
Kappa statist:	ic		0.30	28			
Mean absolute	error		0.05	61			
Root mean squa	ared error		0.23	69			
Relative absol	lute error		43.31	67 %			
Root relative	squared es	rror	101.59	41 %			
UnClassified 1	Instances		3		5	*	
Total Number o	of Instance		60		5	\$	
Total Number o	of Instance	y Class ==	60	Recall	·	-	cea Class
Total Number o	of Instance	y Class == FP Rate	60		F-Measure	ROC A:	rea Class 17 zero
Total Number o	of Instance Accuracy By TP Rate	y Class == FP Rate 0.667	60 = Precision	1	F-Measure	ROC A	17 zero
Total Number o	of Instance Accuracy By TP Rate 1	y Class == FP Rate 0.667 0.036	60 = Precision 0.889	1 1	F-Measure 0.941	ROC A: 0.7: 0.7:	17 zero 33 four
UnClassified : Total Number (=== Detailed)	of Instance Accuracy By TP Rate 1 1	FP Rate 0.667 0.036 0	60 = Precision 0.889 0.333	1 1 0	F-Measure 0.941 0.5	ROC A: 0.7: 0.7: 0.5	17 zero 33 four thre
Total Number o	TP Rate 1 0	FP Rate 0.667 0.036 0	60 = Precision 0.889 0.333 0	1 1 0	F-Measure 0.941 0.5 0	ROC A: 0.7: 0.5 0.5	17 zero 33 four thre two

Time taken to build model: 0 seconds Stratified cross-validation === === Summary === Correctly Classified Instances 48 80 Incorrectly Classified Instances 12 20 8 0.2996 Kappa statistic Mean absolute error 0.0825 0.2475 Root mean squared error Relative absolute error 57.2014 % Root relative squared error 97.0712 % Total Number of Instances 60 === Detailed Accuracy By Class TD Date FD Date Precision Recall F-Measure ROC Area Class

	0.939	0.545	0.885	0.939	0.911	0.642	zero	
	1	0.034	0.5	1	0.667	1	four	
	0	0.038	0	0	0	0.342	three	
	0	0.034	0	0	0	0.915	two	
	0	0	0	0	0	0.949	one	
Weighted Avg.	0.8	0.452	0.739	0.8	0.766	0.629		

Fig. 10. Instances classified by Bayes Net algorithms.

W

		lidation ==	-				
=== Summary ==	-						
Correctly Clas	sified In:	stances	49		81.6667	ş	
Incorrectly Cl	assified 3	Instances	11		18.3333	ş	
Kappa statisti	с		0.329	9			
Mean absolute	error		0.079				
Root mean squa			0.242				
Relative absol			55.262				
Root relative			95.032	8 %			
Total Number o	f Instance	23	60				
=== Detailed A	ccuracy B	Y Class ===	-				
	TD Date	ED Date	Precision	Pecel 1	F-Manaura	DOC Area	C1.000
		0.545		0.959		0.635	
		0.040		1	0.571	1	
		0 052					1001
	1	0.052	0.4	-	0	0.288	thre
	1		0	-	0	0.288	
	1 0	0.019	0	0	0		two
Weighted Avg.	1 0 0 0	0.019 0.017 0	0 0 0	0 0 0	0	0.915	two
Weighted Avg.	1 0 0 0	0.019 0.017 0	0 0 0	0 0 0	0	0.915	two

The algorithms performance is partitioned into several sub items for easier analysis and evaluation. In first part evaluate classification and non-classification instances values with time builds models are used in tabular form. All measures can be calculated based on four values, namely True Positive (TP, a number of correctly classified that an instances positive), False Positive (FP, a number of incorrectly classified that an instance is positive), False Negative (FN, a number of incorrectly classified that an instance is negative), and True Negative (TN, a number of correctly classified that an instance is negative).

Finally conclude the best tree algorithms for software defect data set.

3.4 RESULT AND DISCUSSION-

There are several algorithms for classification of which the most well-known and widely applicable ones are run on the given dataset. The results of each of these runs using weka

52

IJSER © 2016 http://www.ijser.org From table .2 we easily calculate the correctly and incorrectly classified total instances of data set. Given table-.2 shows the comparison between the classified attribute by weka tool.

Since the predictive performance is fully depend on accuracy and kappa static is a metric that compute an observe accuracy with expected accuracy. If number of classes is more than two then according table.2 we easily analyzed as:

TABLE 2 COMPUTING THE CLASSIFIER ALGORITHMS ON BASIS OF MORE THAN TWO CLASSES

S.N	Classifier	Correctly	Incorrectly	Time	Number	Unclassified	Kappa
	Algorithms	Classified	Classified	build a	of		Static
				Model	Classes		
1	ID3	81.667	11.667	0.02	5	6.667	0.2276
2	J48	83.333	16.667	0.00	5	0.000	0.1513
3	J48graft	83.333	16.667	0.00	5	0.000	0.1513
4	LAD	83.333	16.667	0.03	5	0.000	0.3576
5	Random	83.333	16.667	0.00	5	0.000	0.2042
6	REP	81.667	18.335	0.00	5	0.000	0.1279
7	ZeroR	81.667	18.335	0.00	5	0.000	0.1442
8	OneR	83.333	16.667	0.00	5	0.000	0.2042
9	Prism	81.667	13.333	0.02	5	6.000	0.3028
10	BayesNet	80.000	20.000	0.00	5	0.000	0.2996
11	Naïve	81.667	18.333	0.00	5	0.000	0.3299
	Bayes						

- In the above table give highest number of percentage for correctly classified instances value is 83.333%.
- Total highest number of classes has a common value "five" for all classifier algorithms.
- The minimum number of unclassified instances is 0.00.
- The maximum highest number accuracy is evaluated 0.3576.

4 CONCLUSION-

In this analysis we choose the LAD Tree is the best data mining classifier algorithms to be applied over selected datasets. Because LAD Tree has highest correctly value 83.333% and minimum number of unclassified instances is 0.00. Also Lad tree have highest value of metric for accuracy. Implementation of quality metrics during the development process ensures production of high quality software. In this analysis different classifier algorithms and results are evaluated. So the future work will be based on other classifiers that can be applied on the data set and also to apply other data mining tools on the data set such that the best techniques can be identified.

REFERENCES

- [1] Jiawei Han, Micheline Kamber and Jian Pei "Data Mining Concepts and Techniques" Morgan Kaufmann Publishers Third Edition. 2012 .
- [2] Sunita Tiwari and Neha Chaudhary "Data mining And Warehousing" Dhanpati Rai and Co.(P) Ltd. First edition: 2010. Kaufmann Publishers Third Edition. 2012.
- [3] Holte, R.C., 1993 Very simple classification rules Perform well on most commonly used datasets. Machine Learning Vol 11, pp 63-91.
- [4] OneR:http://en.wikipedia.org/wiki/One-attribute-rule 16 April 2007.
- [5] Tzung-Pei Hong and Shian Shyong, "Tseng; Two-phase PRISM Learning Algorithms", Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, IEEE International Conference, Vol. 4, pp 3895 – 3899,1997
- [6] M. Shepperd, C. Schofield, and B. Kitchenham, "Effort estimation using analogy," in of the 18th International Conference On Software Engineering, pp.170-178. Berlin, Germany, 1996.
- [7] Alsmadi and Magel, "Open source evolution Analysis," in proceeding of the 22rd IEEE International Conference on Software Maintenance (ICMS'06), phladelphia, pa.USA, 2006.
- [8] Boehm,Clark,Horowitz,Madachy,Shelby and Westland, "Cost models for future software life cycle Process: COCOMO2.0." in Annals of software Engineering special volume on software process and prodocuct measurement, J.D.Arther and S.M.Henry, Eds, vol.1, pp.45-60, j.c. Baltzer AG, science publishers, Amsterdam, The NetherInds, 1995.
- [9] Ribu, Estimating object oriented software projects With use cases, M.S. thesis, University of Oslo Department of informatics, 2001.
- [10] N. Nagwani and S. Verma," prediction data mining Model for software bug estimation using average Weighted similarity," In proceeding of advance Computing conference (IACC), 2010.
- [11] A.E.Hassan ,"The road ahead for mining software Repositories", in processing of the future of software Maintenance at the 24th IEEE international Conference on software maintenance, 2008.
- [12] Z.Li and Reformat," A practical method for the Software fault prediction", in proceeding of IEEE Nation conference information reuse and Integration (IRI), 2007.
- [13] C.Elcan,"The foundations of cost sensitive learning In processing of the 17 International conference on Machine learning, 2001.
- [14] C.Chang and C.Chu," software defect prediction Using international association rule mining", 2009.
- [15] S.Kotsiantis and D.Kanellopoulos,"Associan rule mining:Arecent overview", GESTS international transactiona on computer science and Engineering, 2006.
- [16] N.Pannurat, N.Kerdprasop and K.Kerdprasop"Database reverses engineering based On Association rule mining", JJCSI international Journal Of com-

puter science issues 2010.

- [17] U.M.Fayyad,G Piatesky Shapiro,P.Smuth and R. Uthurusamy, "Advances in knowledge discovery And data mining", AAAI Press, 1996.
- [18] M.Shtern and Vassilios,"Review article advances in Software engineering clustering methodologies for Software engineering", Tzerpos volume, 2012.
- [19] P.Runeson and O.Nyholm,"Detection of duplicate Defect report using neural network processing", inProceeding of the 29th international conference on Software engineering 2007.
- [20] G.Vishal and S.L. Gurpreet," A servey of text mining Techniques and applications", journal of engineering Technologies in web intelligence, 2009.
- [21] Lovedeep and VarinderKaurArti" Application of Data mining techniques in software engineering"International journal of electrical, electronics and computer system(IJEECS) Volume-2 issue-5, 6. 2014.
- [22] Richi Nayak and TianQiu" Adata mining application "international journal of software engineering and Knowledge engineering volume.15, issue-04,2005.

IJSER